MATHEMATICS SPECIALIST

MAWA Year 12 Examination 2019

Calculator-assumed

Marking Key

© MAWA, 2019

Licence Agreement

This examination is Copyright but may be freely used within the school that purchases this licence.

- The items that are contained in this examination are to be used solely in the school for which they are purchased.
- They are not to be shared in any manner with a school which has not purchased their own licence.
- The items and the solutions/marking keys are to be kept confidentially and not copied or made available to anyone who is not a teacher at the school. Teachers may give feedback to students in the form of showing them how the work is marked but students are not to retain a copy of the paper or marking guide until the agreed release date stipulated in the purchasing agreement/licence.

The release date for this exam and marking scheme is 14th June.

Solution If $z^2 + 3z + 9 = 0 \implies z = \frac{1}{2}(-3 \pm \sqrt{9 - 36}) = \frac{1}{2}(-3 \pm 3\sqrt{3}i)$

Now $-3+3\sqrt{3}i$ has modulus $\sqrt{9+27} = 6$ and argument $\pi - \tan^{-1}(\sqrt{3}) = 2$	π	_ 2π
	3	3

Thus the two roots of the quadratic are $z = 3 \operatorname{cis} \theta$ with $\theta = \pm \frac{2\pi}{3}$

Mathematical behaviours	Marks
 applies the quadratic formula appropriately 	1
 identifies the modulus and argument for one of the roots 	1
deduces the second root	1

Question 9(b)

Since $z = 3 \exp\left(\pm \frac{2\pi i}{3}\right)$ then $z^N = 3^N \exp\left(\pm \frac{2N\pi i}{3}\right)$	
If $z_1^N = z_2^N$ then $\exp\left(\frac{2N\pi i}{3}\right) = \exp\left(-\frac{2N\pi i}{3}\right) \Rightarrow \exp\left(\frac{4N\pi i}{3}\right) = 1$	
For this to hold, the argument must be a multiple of 2π which implies that N is of 3	s a multiple
Mathematical behaviours	Marks

Solution

Mathematical behaviours	Marks
• states the correct form for z^N	1
 derives the correct equation for the two expressions to be equal 	1
 deduces the acceptable values of N 	1

(3 marks)

Question 10(a)

Solution	
If $\mathbf{r}(t) = 3\cos(2t)\mathbf{i} + 4\sin(2t)\mathbf{j}$ then $x = 3\cos 2t$ and $y = 4\sin 2t$	
Hence $\cos 2t = x/3$ and $\sin 2t = y/4$. Since $\sin^2 \theta + \cos^2 \theta = 1$,	
$\left(\frac{x}{3}\right)^2 + \left(\frac{y}{4}\right)^2 = 1 \implies \frac{x^2}{9} + \frac{y^2}{16} = 1$	
Mathematical behaviours	Marks
 correctly determines equations for ^x/₃ = cos(2t) and ^y/₄ = sin(2t) uses Pythagorean theorem correctly to obtain the result required 	2 1

Question 10(b)

Solution	
The path is an ellipse	
Mathematical behaviours	Marks
states the path is an ellipse	1

Question 10(c)

Solution	
If $\mathbf{r}(t) = 3\cos(2t)\mathbf{i} + 4\sin(2t)\mathbf{j}$ then $\mathbf{v}(t) = -6\sin(2t)\mathbf{i} + 8\cos(2t)\mathbf{j}$	
Mathematical behaviours	Marks
 derives the correct expression for the velocity vector 	1

Question 10(d)

Page **3**

Solution	
Speed = $ \mathbf{v}(t) $	
This equals $\sqrt{(-6\sin 2t)^2 + (8\cos 2t)^2} = \sqrt{36\sin^2 2t + 64\cos^2 2t}$	
$=\sqrt{36(1-\cos^2 2t)+64\cos^2 2t}$	
$=\sqrt{36+28\cos^2 2t}$	
	Marks
 writes down the correct expression for the speed 	1
• rewrites $\sin^2 2t = 1 - \cos^2 2t$	1
• obtains an expression for the speed in terms of $\cos^2 2t$	1

CACULATOR-ASSUMED MARKING KEY

(1 mark)

(3 marks)

© MAWA 2019

(1 mark)

CALCULATOR-ASSUMED MARKING KEY

Question 10(e)

(2 marks)

Solution	
Maximum speed occurs when $\cos^2 2t = 1 \Rightarrow \cos 2t = \pm 1$ and then speed is $\sqrt{64} = 8$	
If $\cos 2t = \pm 1 \implies 2t = n\pi \implies t = n\pi / 2$ for integer <i>n</i>	
Hence maximum speed attained when $t = n\pi/2$ for integer values of n	
	Marks
deduces the maximum speed	1
 states the times when maximum speed is attained 	1

Question 11

(6 marks)

CALCULATOR-ASSUMED MARKING KEY

Question 12

(8 marks)

Question 13 (a)

(7 marks)

Solution	
Initial velocity $\mathbf{v}(0) = 140\cos 45^{\circ} \mathbf{i} + +140\sin 45^{\circ} \mathbf{j} = 70\sqrt{2} (\mathbf{i} + \mathbf{j})$ As $\mathbf{a}(t) = -9.8 \mathbf{j}$ then $\mathbf{v}(t) = \int -9.8 \mathbf{j} dt = -9.8t \mathbf{j} + \mathbf{c}$ Applying the initial condition yields $\mathbf{c} = 70\sqrt{2} (\mathbf{i} + \mathbf{j})$ so $\mathbf{v}(t) = 70\sqrt{2} \mathbf{i} + (70\sqrt{2} - 9)$.8t) j
Integrating again then $\mathbf{r}(t) = \int \mathbf{v}(t)dt = 70\sqrt{2}t \ \mathbf{i} + (70\sqrt{2}t - 4.9t^2) \mathbf{j} + \mathbf{d}$ for some constant d Since initially $\mathbf{r=0}$ so $\mathbf{d=0}$, and hence $\mathbf{r}(t) = 70\sqrt{2}t \ \mathbf{i} + (70\sqrt{2}t - 4.9t^2) \mathbf{j}$	
Mathematical behaviours	Marks
correctly obtains v(0)	1
• uses $\mathbf{a}(t) = -9.8 \mathbf{j}$ to derive $\mathbf{v}(t)$	1
 uses initial conditions to determine the constant vector c 	1
• deduces that $\mathbf{v}(t) = 70\sqrt{2} \mathbf{i} + (70\sqrt{2} - 9.8t) \mathbf{j}$	1
• anti-differentiates $\mathbf{v}(t)$ to give $\mathbf{r}(t)$	1
• uses $\mathbf{r}(0) = 0$ to determine \mathbf{d}	1
• deduces the final form of $\mathbf{r}(t)$	

Question 13 (b)

(2 marks)

Solution	
Maximum height is achieved when the vertical component of velocity vanishes	
This occurs when $t = 70\sqrt{2}/9.8$	
At this time height of projectile is	
$70\sqrt{2}\left(\frac{70\sqrt{2}}{9.8}\right) - 4.9\left(\frac{70\sqrt{2}}{9.8}\right)^2 = 500 \text{ metres}$	
Mathematical behaviours	Marks
determines time for maximum height	1
 correctly evaluates for maximum height of 500 m 	1

Question 13 (c)

(2 marks)

Solution	
Projectile reaches horizontal again when the j component of $\mathbf{r}(t)$ vanishes	S.
The requisite time is $70\sqrt{2}/4.9 \approx 20.2$ seconds	
	Marks
 recognition of the need to determine when the vertical displacement is 	zero 1
correct calculation of total flight time	1

Question 13 (d)

(2 marks)

Solution	
When $t = 70\sqrt{2}/4.9$ then $\mathbf{v} = 70\sqrt{2}$ (i - j) and speed = $70\sqrt{2}\sqrt{2} = 140$ m/s	
	Marks
 evaluation of the velocity vector when the projectile strikes ground 	1
evaluates the requisite speed	1

Question 14 (a)

Г

(7 marks)

٦

Solution	
Since $f(x) = \frac{x^2 - 5x + 7}{x - 2}$, $f(x) = 0 \Leftrightarrow x^2 - 5x + 7 = 0$. But this quadratic has no so $f(x)$ has no real zero.	real roots
Now $f'(x) = \frac{(x-2)(2x-5) - (x^2 - 5x + 7)}{(x^2 - 5x + 7)^2} = \frac{x^2 - 4x + 3}{(x^2 - 5x + 7)^2} = \frac{(x-1)(x-3)}{(x^2 - 5x + 7)^2}$	
Hence $f'(x) = 0$ at $x = 1$ and $x = 3$. Since $f(1) = -3$ and $f(3) = 1$, then $(1, -3)$ and $(3, 1)$ are critical points. The line $x = -2$ is a vertical asymptote for the graph. As $f(x) = \frac{x(x-2)-3(x-2)+1}{x-2} = x-3 + \frac{1}{x-2}$ then $f(x) \to x-3$ as $x \to \pm \infty$	
Mathematical behaviours	Marks
 shows that there is no zero 	1
differentiates correctly	1
• solves $f'(0) = 0$	1
• evaluates $f(1)$ and $f(3)$	1
obtains vertical asymptote	1
 derives the correct form of the expression for large x 	1
• deduces correct limiting behaviours as $x \to \infty$ and $x \to -\infty$	1+1

CALCULATOR-ASSUMED MARKING KEY

Question 14 (b)

Question 15(a)

Solution
We know that $\exp(i\phi) = \cos\phi + i\sin\phi$ so that
$\exp(-i\phi) = \cos(-\phi) + i\sin(-\phi) = \cos\phi - i\sin\phi$
Then

 $\exp(i\phi) - \exp(-i\phi) = \cos\phi + i\sin\phi - [\cos\phi - i\sin\phi] = 2i\sin\phi$

so that

$$\sin\phi = \frac{1}{2i} \left[\exp(i\phi) - \exp(-i\phi) \right]$$

as required.

Mathematical behaviours	Marks
• writes down appropriate form for $exp(-i\phi)$	1
 uses appropriate properties to write this exponential in terms of cos \u03c6 and sin \u03c6 	1
 deduces the requisite result 	1

Question 15(b)

Solution	
If we denote	
$E \equiv \exp(i\phi) \Longrightarrow 2i \sin \phi = E - E^{-1}$ Raising to the appropriate power gives	
$32i^{5}\sin^{5}\phi = E^{5} + 5E^{4}(-E^{-1}) + 10E^{3}(-E^{-1})^{2} + 10E^{2}(-E^{-1})^{3} + 5E(-E^{-1})^{4} + (-E^{-1})^{4} + (-$	$-E^{-1})^5$
$= (E^{5} - E^{-5}) - 5(E^{3} - E^{-3}) + 10(E - E^{-1})$	
Hence	
$32i\sin^5\phi = 2i\sin 5\phi - 10i\sin 3\phi + 20i\sin\phi$	
so that	
$16\sin^5\phi = \sin 5\phi - 5\sin 3\phi + 10\sin\phi$	
as required	
Mathematical behaviours	Mar

Mathematical behaviours	Marks
 raises the result of part (a) to the fifth power 	1
 expands the binomial correctly (both coefficients and signs) 	1+1
 collects powers together in the appropriate way 	1
• writes $E^n - E^{-n}$ in terms of $\sin n\phi$	1
deduces the required answer	1

(6 marks)

(3 marks)

Question 16(a)

CALCULATOR-ASSUMED MARKING KEY

Solution	
If $z - ki$ is a factor of $P(z)$ then this means that $P(ik) = 0$	
Hence $k^4 + 2ik^3 - qk^2 - 98ik + 98 = 0$ (*)	
Equating imaginary parts tells us that $2k^3 - 98k = 0 \Rightarrow 2k(k^2 - 49) = 0$	
Now this gives that either $k = 0$ or $k = \pm 7$	
The real part of (*) gives that $k^4 - qk^2 + 98 = 0$	
Now if $k = 0$ this equation cannot hold so this possibility must be ruled out.	
Then if $k^2 = 49 \implies (49)^2 - 49q + 98 = 0 \implies 49 - q + 2 = 0$	
Hence we conclude that $q = 51$ and $k = \pm 7$	
Mathematical behaviours	Marks
• appreciates that $z - ki$ is a factor implies that $P(ik) = 0$	1
• expands the form of <i>P</i> (<i>ik</i>)	1
 puts real and imaginary parts of the expression both equal to zero 	1
 shows that imaginary part yields three possible values for k 	1
• argues that the form of the real part prohibits the possibility $k=0$	1
 hence deduces the appropriate value of q 	1

Question 16(b)

(4 marks)

Now we deduce that $(z-7i)(z+7i) = (z^2+49)$ is a factor of $P(z)$ By long division or CAS $z^4 - 2z^3 + 51z^2 - 98z + 98 = (z^2+49)(z^2-2z+2)$ If $z^2 - 2z + 2 = 0 \Rightarrow z = \frac{1}{2}(2 \pm \sqrt{4-8}) = 1 \pm i$	
Hence the four roots of $P(z) = 0$ are $z = \pm 7i$ and $z = 1 \pm i$	
Mathematical behaviours	Marks
• identifies the quadratic factor of <i>P</i> (<i>z</i>)	1
 determines the other quadratic factor 	1
 solves for the other two roots of the equation 	1
 states all four solutions in explicit form 	1

Solution

(6 marks)

CACULATOR-ASSUMED MARKING KEY

Question 17 (a)

(3 marks)

Question 17(b)

(4 marks)

Solution	
$f'(x) = A + \cos x$	
$\operatorname{So} A - 1 \le f'(x) \le A + 1.$	
Now f is $1 - 1 \leftrightarrow f'$ does no change sign. (*)	
So f is $1 - 1 \leftrightarrow A \ge 1$ or $A \le -1$	
Mathematical behaviours	Marks
differentiates correctly	1
 notes the range of values of the derivative 	1
 identifies criterion for 1 – 1 property (*) 	1
answers correctly	1

Question 17(c)	(3 marks)
Solution	
To evaluate $f^{-1}(5)$ we need to solve $f(x) = -2x + \sin x = 5$ (*) From a calculator $x \approx -2.71$	
Mathematical behaviours	Marks
writes down equation (*)	1
 gives solution to the specified level of accuracy 	2

Solution

Question	18 ((a)
~~~~		~_/

(6	marks)
----	--------

Let A denote the airplane. Given the position and velocity in the question, at time $t$ after 1pm the airplane	is located at	
(60, 160, 3.74) + t(-100, 20, 0.8) = (60 - 100t, 160 + 20t, 3.74)	(1+0.8t)	
Similarly, at the same time the helicopter is located at (-70,108,4.52) + t(-50,40,0.5) = (-70-50t,108+40t,4.52+0.5t)		
The first components of the two position vectors coincide when $60-100t = -70-50t \implies 130 = 50t \implies t = 2.6$		
When $t = 2.6$ the aircraft is located at $(60 - 260, 160 + 52, 3.74 + 2.08) = (-200, 212, 5.82)$		
The helicopter is located at $(-70-130,108+104,4.52+1.3) = (-200,212,5.82)$		
Mathematical behaviours	Marks	
<ul> <li>correctly determines the position of the airplane at time <i>t</i></li> <li>correctly determines the position of the helicopter at time <i>t</i></li> <li>determines when one the components of the two locations are equal</li> <li>shows that at this time the other two components are also equal</li> <li>concludes with evidence that a collision is imminent</li> </ul>	1 1 2 1 1	

(2 marks)

#### Question 18 (b)

Solution		
Since $t = 2.6$ the collision occurs at 3.36pm and at the location $-200i+212j+5.82k$		
Mathematical behaviours	Marks	
<ul> <li>correctly converts t = 2.6 to 3.36 p.m.</li> <li>states position of the collision point</li> </ul>	1 1	

#### Question 18 (c)

#### (7 marks)

Solution	
At 2 p.m., $t = 1$ so	
$r_A(1) = \langle 60, 160, 3.74 \rangle + 1 \langle -100, 20, 0.8 \rangle = \langle -40, 180, 4.54 \rangle km$ and	
$r_H(1) = \langle -70, 108, 4.52 \rangle + 1 \langle -50, 40, 0.5 \rangle = \langle -120, 148, 5.02 \rangle km$	
Making the helicopter to be at rest (by imposing a negative velocity on it) we have: $_{A}v_{H} = v_{A} - v_{H} = <-150, 120, 0.5 > -<-50, 40, 0.5 > = <-100, 80, 0 >$ $\overrightarrow{HA} = \overrightarrow{HO} + \overrightarrow{OA} = -<-120, 148, 5.02 > + <-40, 180, 4.54 > = < 80, 32, -0.48 >$	
$\overrightarrow{HR} = \overrightarrow{HA} + {}_{A}v_{H}$ (where <i>R</i> is the point at which airplane and helicopter are closest) =< 80, 32, -0.48 > + t < -100, 80, 0 > = < 80 - 100t, 32 + 80t, -0.48 >	
Calculate $\overrightarrow{HR} \cdot {}_{A}v_{H} = 0$ to determine closest distance between aircraft i.e. $< 80 - 100t, 32 + 80t, -0.48 > \cdot < -100, 80, 0 > = 0$	
Simplifying gives: $5440 = 16400t \rightarrow t = 0.3317$ hours	
At $t = 0.3317$ , $\left  \overrightarrow{HR} \right  =  < 46.83, 58.536, -0.48 >   = 74.96$ km	
$\therefore$ the shortest distance between the aircraft following the redirection is 74.96 km	
Mathematical behaviours	Marks
• determines the position vectors $r_A(1)$ and $r_H(1)$	2
• determines relative velocity vector for $_A v_H$	1
• correctly develops equation (i.e. $\overrightarrow{HR} = \overrightarrow{HA} + {}_{A}v_{H}$ )	1
• uses scalar dot product $\overrightarrow{HR} \cdot {}_{A}v_{H} = 0$	1
• evaluates for $t = 0.7508$ hours	1
<ul> <li>determines minimum distance following the redirection</li> </ul>	1